XWe have detected your location as outside the U.S/Canada, if you think this is wrong, you can choose your location.

Macmillan Higher Education Palgrave Higher Education

An Introduction to Markov Processes

Edition 2nd Edition
ISBN 9783642405228
Publication Date November 2013
Formats Hardcover Paperback Ebook 
Publisher Springer

This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are: Doeblin's theory, general ergodic properties, and continuous time processes. Applications are dispersed throughout the book. In addition, a whole chapter is devoted to reversible processes and the use of their associated Dirichlet forms to estimate the rate of convergence to equilibrium. These results are then applied to the analysis of the Metropolis (a.k.a simulated annealing) algorithm.

The corrected and enlarged 2nd edition contains a new chapter in which the author develops computational methods for Markov chains on a finite state space. Most intriguing is the section with a new technique for computing stationary measures, which is applied to derivations of Wilson's algorithm and Kirchoff's formula for spanning trees in a connected graph.

Daniel Stroock has held positions at NYU, the University of Colorado, and MIT. In addition, he has visited and lectured at many universities throughout the world. He has authored several books on analysis and various aspects of probability theory and their application to partial differential equations and differential geometry.

Preface
Random Walks, a Good Place to Begin
Doeblin's Theory for Markov Chains
Stationary Probabilities
More about the Ergodic Theory of Markov Chains
Markov Processes in Continuous Time
Reversible Markov Processes
A minimal Introduction to Measure Theory
Notation
References
Index.

Reviews

Add a review